p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23⋊4SD16, C24.120D4, C4.22+ 1+4, C8⋊8D4⋊25C2, Q8⋊D4⋊28C2, C4.Q8⋊31C22, C22⋊SD16⋊28C2, C4⋊C4.126C23, C22⋊C8⋊68C22, (C2×C8).319C23, (C2×C4).385C24, (C22×C8)⋊36C22, C23.400(C2×D4), (C22×C4).483D4, C22⋊Q8⋊68C22, D4⋊C4⋊42C22, Q8⋊C4⋊46C22, (C2×SD16)⋊38C22, (C2×D4).138C23, (C2×Q8).125C23, C22.37(C2×SD16), C2.21(C22×SD16), (C22×Q8)⋊19C22, C23.46D4⋊28C2, C23.47D4⋊28C2, C4⋊D4.180C22, C2.66(C23⋊3D4), (C23×C4).565C22, C22.645(C22×D4), C2.48(D8⋊C22), (C22×C4).1063C23, (C22×D4).380C22, (C2×C22⋊C8)⋊36C2, (C2×C4⋊C4)⋊51C22, (C2×C4).526(C2×D4), (C2×C22⋊Q8)⋊57C2, (C2×C4⋊D4).59C2, SmallGroup(128,1919)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23⋊4SD16
G = < a,b,c,d,e | a2=b2=c2=d8=e2=1, ab=ba, eae=ac=ca, ad=da, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede=d3 >
Subgroups: 532 in 234 conjugacy classes, 94 normal (28 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C24, C24, C22⋊C8, D4⋊C4, Q8⋊C4, C4.Q8, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4⋊D4, C4⋊D4, C22⋊Q8, C22⋊Q8, C22×C8, C2×SD16, C23×C4, C22×D4, C22×D4, C22×Q8, C2×C22⋊C8, Q8⋊D4, C22⋊SD16, C8⋊8D4, C23.46D4, C23.47D4, C2×C4⋊D4, C2×C22⋊Q8, C23⋊4SD16
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C24, C2×SD16, C22×D4, 2+ 1+4, C23⋊3D4, C22×SD16, D8⋊C22, C23⋊4SD16
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 17)(8 18)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 25)
(1 5)(2 26)(3 7)(4 28)(6 30)(8 32)(9 20)(10 14)(11 22)(12 16)(13 24)(15 18)(17 21)(19 23)(25 29)(27 31)
(1 29)(2 30)(3 31)(4 32)(5 25)(6 26)(7 27)(8 28)(9 24)(10 17)(11 18)(12 19)(13 20)(14 21)(15 22)(16 23)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 7)(3 5)(4 8)(9 24)(10 19)(11 22)(12 17)(13 20)(14 23)(15 18)(16 21)(25 31)(27 29)(28 32)
G:=sub<Sym(32)| (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25), (1,5)(2,26)(3,7)(4,28)(6,30)(8,32)(9,20)(10,14)(11,22)(12,16)(13,24)(15,18)(17,21)(19,23)(25,29)(27,31), (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,24)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,7)(3,5)(4,8)(9,24)(10,19)(11,22)(12,17)(13,20)(14,23)(15,18)(16,21)(25,31)(27,29)(28,32)>;
G:=Group( (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25), (1,5)(2,26)(3,7)(4,28)(6,30)(8,32)(9,20)(10,14)(11,22)(12,16)(13,24)(15,18)(17,21)(19,23)(25,29)(27,31), (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,24)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,7)(3,5)(4,8)(9,24)(10,19)(11,22)(12,17)(13,20)(14,23)(15,18)(16,21)(25,31)(27,29)(28,32) );
G=PermutationGroup([[(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,17),(8,18),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,25)], [(1,5),(2,26),(3,7),(4,28),(6,30),(8,32),(9,20),(10,14),(11,22),(12,16),(13,24),(15,18),(17,21),(19,23),(25,29),(27,31)], [(1,29),(2,30),(3,31),(4,32),(5,25),(6,26),(7,27),(8,28),(9,24),(10,17),(11,18),(12,19),(13,20),(14,21),(15,22),(16,23)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,7),(3,5),(4,8),(9,24),(10,19),(11,22),(12,17),(13,20),(14,23),(15,18),(16,21),(25,31),(27,29),(28,32)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4L | 8A | ··· | 8H |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | SD16 | 2+ 1+4 | D8⋊C22 |
kernel | C23⋊4SD16 | C2×C22⋊C8 | Q8⋊D4 | C22⋊SD16 | C8⋊8D4 | C23.46D4 | C23.47D4 | C2×C4⋊D4 | C2×C22⋊Q8 | C22×C4 | C24 | C23 | C4 | C2 |
# reps | 1 | 1 | 2 | 2 | 4 | 2 | 2 | 1 | 1 | 3 | 1 | 8 | 2 | 2 |
Matrix representation of C23⋊4SD16 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 2 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 16 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
5 | 12 | 0 | 0 | 0 | 0 |
5 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 15 | 0 |
0 | 0 | 0 | 0 | 16 | 1 |
0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 9 | 16 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 16 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,2,1,0,0,0,0,0,0,0,16,0,0,0,0,16,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[5,5,0,0,0,0,12,5,0,0,0,0,0,0,0,0,9,9,0,0,0,0,0,16,0,0,15,16,0,0,0,0,0,1,0,0],[0,16,0,0,0,0,16,0,0,0,0,0,0,0,16,16,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16] >;
C23⋊4SD16 in GAP, Magma, Sage, TeX
C_2^3\rtimes_4{\rm SD}_{16}
% in TeX
G:=Group("C2^3:4SD16");
// GroupNames label
G:=SmallGroup(128,1919);
// by ID
G=gap.SmallGroup(128,1919);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,758,219,675,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^8=e^2=1,a*b=b*a,e*a*e=a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^3>;
// generators/relations